Home

Quick Links

Search

 
Zonal cooperative inversion of partially co-located data sets constrained by structural a priori informationNormal access

Authors: H. Paasche, J. Tronicke and P. Dietrich
Issue: Vol 10, No 2, April 2012 pp. 103 - 116
DOI: 10.3997/1873-0604.2011033
Language: English
Info: Article, PDF ( 4.63Mb )

Abstract:
In many near-surface geophysical studies it is now common practice to collect co-located disparate geophysical data sets to explore subsurface structures. Reconstruction of physical parameter distributions underlying the available geophysical data sets usually requires the use of tomographic reconstruction techniques. To improve the quality of the obtained models, the information content of all data sets should be considered during the model generation process, e.g., by employing joint or cooperative inversion approaches. Here, we extend the zonal cooperative inversion methodology based on fuzzy c-means cluster analysis and conventional single-input data set inversion algorithms for the cooperative inversion of data sets with partially co-located model areas. This is done by considering recent developments in fuzzy c-means cluster analysis. Additionally, we show how supplementary a priori information can be incorporated in an automated fashion into the zonal cooperative inversion approach to further constrain the inversion. The only requirement is that this a priori information can be expressed numerically; e.g., by physical parameters or indicator variables. We demonstrate the applicability of the modified zonal cooperative inversion approach using synthetic and field data examples. In these examples, we cooperatively invert S- and P-wave traveltime data sets with partially co-located model areas using water saturation information expressed by indicator variables as additional a priori information. The approach results in a zoned multi-parameter model, which is consistent with all available information given to the zonal cooperative inversion and outlines the major subsurface units. In our field example, we further compare the obtained zonal model to sparsely available borehole and direct-push logs. This comparison provides further confidence in our zonal cooperative inversion model because the borehole and direct-push logs indicate a similar zonation.


Back to the article list