Home

Quick Links

Search

 
Focusing on soil-foundation heterogeneity through highresolution electrical and seismic tomographyNormal access

Authors: M. Cercato and G. De Donno
DOI: 10.3997/1873-0604.2017044
Language: English
Info: Article, PDF ( 1.62Mb )

Abstract:
The reconstruction of the current status of a historic building is essential for seismic safety assessment and for designing the retrofitting interventions since different safety and confidence factors have to be assumed, depending on the level of information about the subsoil structure. In this work, we present an investigation of the shallow subsurface below and around a historic building affected by differential settlements in order to define its geometry and to characterise its stiffness at low strain. To this end, we employed high-resolution electrical resistivity and seismic (both P-wave and S-wave) tomographies. A three-dimensional electrical resistivity tomography survey was performed to obtain more information about the type and the maximum depth of the building foundation. Electrical resistivity and seismic tomographies were carried out alongside the building, aimed at imaging the top soils and the near-surface geometry. The corresponding inverted models pointed out a remarkable heterogeneity of the shallow subsoil below the building, which is partly founded on a weathered layer and partly on a more rigid lithotype. This heterogeneity is probably a concurrent cause of the building’s instability under both static and seismic loading. Our results demonstrate that the man-made fillings and the top soils have to be thoroughly investigated to fully understand the soil-structure behaviour. In this light, the integration of non-invasive high-resolution geophysical techniques, especially tomographic methods, has been proved to properly address the problem of imaging the shallow subsoil.


Back to the article list